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From Artificial Intelligence (Al)
to Machine Learning (ML) and
Deep Learning ARTIFICIAL INTELLIGENCE

A program that can sense, reason,
act, and adapt

Main categories of ML algorithms:

MACHINE LEARNING

) .. Algorithms whose performance improve
* Unlabeled data in training as they are exposed to more data over time

(@) Unsupervised

(b) Supervised
* Learning from labeled data nEEP

LEARNING

(c) Reinforcement ) o Subset of machine learning in
*  Works on a basic principle of which multilayered neural

i . networks learn from
positive and negative feedback il s
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Intuition from physics in understanding basic principles of Al / ML

* Ising Model — ferromagnetism model
where atoms in a solid lattice can be
either spin-up or spin-down

LowT High T Solved

o PR PEERribREE  Tememeas
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As T increases, S increases but net magnetization decreases

Solution of magnetization order parameter (m)
under nil background magnetic field

1.0 F  asingle solution above
phase transition

05 |  i.e. high temperature
state with a single net
zero spin solution

two solutions below
phase transition

>0 corresponding to low
temperature state
with all spin up /
—0.5F down states
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Machine Learning using Feed-forward Neural Network (FFNN)

* NN — mapping high dimensional space to a smaller space
Weight matrix

A simple example — linear NN: Output / bias
— Note: multiple layers of linear NN is still linear ) A WI xt+ b
npu
(e.g. image)
* Non-linearity in mapping between layers
— Nonlinear activation function o{z) ) A G(w x+b )
RelLU Sigmoid Hyperbolic Tangent
10 1.0 1.00
0.75
RelLU — 8 0-8 0.50
Rectified Linear Unit 6 0.6 0.25
: o
2 0.2 050
-0.75
0 0.0 -1.00
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Stacking multiple layers of non-linear activation function in NN

* Analogous to restricted Boltzmann machine
(RBM)

— Additional nodes (and layer) to learn a
representation of higher dimensional features
from given data set

* Performance is (hopefully) improved by
increasing depth of NN

— Complexity exceeding (degrees of freedom in)
data set would result in overfitting

* Relevant degrees of freedom propagate while
those irrelevant are integrated out under the
mapping through training

— analogus to renormalization group (RG) flow

Schematic of RBM

Blue — visible layer
Orange — hidden layer

Generative
* “create” data / information through learning
Stochastic
* through learned probability distribution
Fully connected
* eliminate interaction between nodes of the same
group (hidden or visible)
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Machine Learning using Feed-forward Neural Network (FFNN)

Feed-forward neural network constructs a mapping Y = f(X;#) by stacking various basic blocks such as the
fully-connected layer, the convolution layer, the deconvolution layer, and the activation layer.

Common types of FFNN:
(@) multi-layer perceptron (MLP), which stacks multiple fully-connected (FC) layers and nonlinear activations

(b) convolutional neural network (CNN) that stacks multiple convolution layers, pooling layers, deconvolution layers,
FC layers, activation layers, normalization layers and other transformations.

The parameters of FFNN are estimated by minimizing the loss function plus regularization terms

[ n

6% = argming B, [[(Y, f(X; 0))] + Q(6) Ly loss = ;‘ Yirue = Ypredictea

n

Q - L|Or L2 IOSS L2 IOSS = Z(yt?'ue T y-p-r'edicted)2
1=1
Usually, the optimization problem is solved via stochastic-gradient-based methods in which the gradient is
computed by backpropagation
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Predicting evolution of weather radar image as a spatiotemporal sequence forecast

* Input sequence: observed radar maps up to current time step

* OQutput sequence: predicted radar maps for future time steps

N

Xt—JJrlp Xt—J+2w S pXt)

Xej1, .., X = argmax p(Xeiq, ..., Xtk

Maximize posterior pdf of echo sequence across K time levels
based on previous ] time levels of observations
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Convolution Layer

A convolution layer takes advantage of the translational invariance property of image data that computes the output by
scanning over the input and applying the same set of linear filters.

Although the input can have an arbitrary dimensionality, 2D convolution is commonly used for precipitation nowcasting
for extracting the spatial correlation in meteorological images.

T
Source pixel ~— 1o 0
N 17 | 2
— 1
3 \0 = 4 T4 |_— ((1x3)+(0x0)+(1x1)+
1 2 —1 1
—16 { 6 /7 2 (-2x2)+(0x6)+(2x2)+
}/<></ 3| 1+ (-1x2)+(0x4) +(1x1) =-3
2 T 4 5 P‘ﬁ | 3 L1 //
1.0 B2 . }'{* 2 n |
//2//2/6\\" = ail
1
STl PR e T
217 — 1 // // 1
poEgots 21 T T
14 1] — 1 //
— Convolution filter // // |1
(Sobel Gx) |1 // //
Destination pixel L= L //
L // |
// //
.//
/
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3x3 filter for 3x3 filter for
i detecting i detecting

: VERTICAL  { 'HORIZONTAL X-shaped” filter

Convolve output from
previous layer using
horizontal filter
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Convolutional and pooling layers

 Convolution: feature detector

* Max-pooling: local translation invariance

Convolution layer Max-pooling layer

Features maps

Input for
next layer

Size of state-to-state
convolutional kernel for
capturing of spatiotemporal
motion patterns

Features maps
Input image
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Autoencoders

3 components: encoder, decoder and latent
space

Force data sets through a compressed
representation of data such that a minimal
amount of information is lost

Common applications: data noise reduction,
generative prediction and anomaly detection

Probability distribution in latent space can be
learned via variational autoencoder approach

Latent
Space

L

Decoder
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Spatiotemporal encoding-forecasting model

Encoding module [[[[!

* Convolutional long short-term
memory (ConvLSTM) model

— X.Shi, Z. Chen, H.Wang, D.Y.Yeung, W.K.Wong and

Niss W.C.Woo. Convolutional LSTM network: A machine
learning approach for precipitation nowcasting. NIPS
2015.
oo —— s | & Pt ol 8 |l sp |—> <o o manusn Sfars
[ U0 suesrsrec:  https://arxiv.org/abs/1506.042 14

Forecasting module * Two ke)’ components:

O,
— Convolutional layers
— Long short-term memory (LSTM) cells in
recurrent neural network (RNN) model



https://arxiv.org/abs/1506.04214
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Trajectory Gated Recurrence Unit (TrajGRU)

Xingjian Shi, Zhihan Gao, Leonard Lausen, Hao Wang,
Dit-Yan Yeung, Wai-kin Wong, and Wang-chun Woo, 2017:
Deep learning for precipitation nowcasting: A benchmark
and a new model.

https://arxiv.org/pdf/1706.03458.pdf

TraGRU replaces LSTM, introduces “Trajectory” and adopts weighted error function

GRU (Gated Recurrent Unit) includes Trajectory: Weighted Error:

reset gate and update gate, similar to Recurrent connections are dynamically optimize performance in heavy rain
LSTM but more efficient. determined
H, H, H; H,
1, z<2
I/I 2, 2<z<5
ht - - w(x) to each pixel according to its rainfall intensity z: w(z) = <5, 5 <z <10 . Also, the
——F ot 10, 10<z <30
30, z>30
masked pixels have weighl 0. The resulting B-MSE and B-MAE scores are con)pmcd as B-MSE =
% Z: 1 Z:m: Z»,“,\‘)l Wni,j(Tn,i,j = En,ij)? and B-MAE = % Z: 1 le: ZJ““] Wn,ij|Tn,ij —
T T T T Zn,i,j|, where N is the total number of frames and w,, ; ; is the weight corresponding to the (7, j)th
X, X, X5 X, pixel in the nth frame. For the conventional MSE and MAE measures, we simply set all the weights

to 1 except the masked points.

(a) ConvRNN: Links are fixed over time/location.
H, H, H3 H,

A } } A

(Yl KYZ /Y3 (Y4
(b) TrajRNN: Links are dynamically determined.


https://arxiv.org/pdf/1706.03458.pdf
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Table 3: HKO-7 benchmark result. We mark the best result within a specific setting with bold face and the
second best result by underlining. Each cell contains the mean score of the 20 predicted frames. In the online
setting, all algorithms have used the online learning strategy described in the paper. “I” means that the score is
higher the better while ‘|” means that the score is lower the better. ‘r > 7" means the skill score at the 7mm/h
rainfall threshold. For 2D CNN, 3D CNN, ConvGRU and TrajGRU models, we train the models with three
different random seeds and report the mean scores.

CSI 4 HSS 1

Algorithms rF>05 r>2 r>5 r>10 r>30 r>05 r>2 r>5 r>10 r>30 bOMELBMAE]
Offline Setting
Last Frame 04022 03266 02401 01574 00692 05207 04531 03582 02512 0.1193 15274 28042
Optical ROVER + Lincar 04762 04089 03151 02146  0.1067  0.6038  0.5473 04516 03301  0.1762 11651 23437
flow  ROVER +Nondinear 04655 04074 03226 02164  0.0951 05896  0.5436 04590 03318  0.1576 10945 22857
2D CNN 05095 04396 03406 02392  0.1093  0.6366  0.5809 04851 03690  0.1885 7332 18091
3D CNN 05100 04411 03415 02424 01185  0.6334 05825 04862 03734 02034 7202 17593
ConvGRU-nobal 05476 04661 03526 02138  0.0712 06756  0.6094 04981 03286  0.1160 9087 19642
ConvGRU 05480 04731 03720 02789 0.1776___ 0.6701 __ 0.6104 05163 04159 02893 5951 15000
TrajGRU 0.5528 04759 0.3751 0.2835  0.1856  0.6731  0.6126 05192 04207  0.2996 5816 14675
unline bet[mg
2D CNN 05112 04363 03364 02435 01263 0.6365  0.5756 04790 03744 02162 6654 17071
3D CNN 05106 04344 03345 02427 01299  0.6355 05736 04766 03733 02220 6690 16903
ConvGRU 05511 04737 03742 02843 0.1837 _ 0.6712 __ 0.6105 05183 04226 02981 5724 14772

TrajGRU 0.5563 0.4798 0.3808 0.2914 0.1933 0.6760 0.6164 0.5253  0.4308 0.3111 5589 14465
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Eoq8  2-h nowcast of radar reflectivity
' from 2020/09/30 18:42H

Extrapolation using optical flow field TrajGRU deep learning nowcast

20200930 184 E_J_EO\'ER-.i
&

+

o

Reflectivity (dBZ)

15
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ResConvLSTM-GAN

. ConvLSTM with residual connections in encoder-
forecaster network

. Generative Adversarial Network (GAN) to improve
representation of small-scale features

Input Input

VGG-19
. Style layers

Generatormodel)
(resConvLSTM) Prediction Ground truth
sequence ) ¢ sequence y

Input
sequence

Discriminator
model

(Multi-Scale CNN)

— e - = -




Rainfall Nowcast Using GAN — Example (1)

Actual TrajGRU ResConvLSTM_GAN
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Example from
real-time trial

Reflectivity

2022-11-23 Based @ 00:54H
Valid @ 01:06H

HK Radars / TrajGRU / GBA

a5

TrajGRU

£
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Latiude

ResConvLSTM-GAN
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Verification of ResConvLSTM-GAN

LPIPS - Lead time plot

* Learned Perceptual Image Patch Similarity (LPIPS) mean =/0.29625
0.35
* perceptual similarity between two images e
0.30
* alow LPIPS score means the images are perceptual similar
0.25 1
: . . ] better
* Both TrajGRU and ResConvLSTM-GAN have higher CSl across all rainfall
0.15
intensities
=0.5 >2.0 >5.0 =10.0 >30.0 0.10 ! ! ! ‘ i i
mean = 0[4067 mean = 0[3508 mean = 0[28903 mdan = §[25014 méan = 0[08579 20 40 60 80 100 120
061 méan = 0[41421 | méan = 035641 | mean = 029939 | méan = 0]23828 | méan = 0/07844 f/c mins
0.5 1
0.4
g 0.3 1 _
- —— Trajgru
- 7 7 7 7 Rover_linear
| é 3‘ID_ead t?rlll'\e [m[if.ltes]m2 é 3IEead twslie [ml_:;l?ltes]dez é 3ll?ead t|5|%|l'1e [ml-f:?.ltes.]m‘2 é 3I?_ead t|5|i?1e [miwlgutes]162 é EJEead t?rie [m|:r’1;?.|tes] 162 HESCG n1|||I LSTM ) GAM

* Further fine-tuning on ResConvLSTM-GAN will be conducted to enhance its
performance, especially in heavy rain scenarios
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ResConvLSTM-GAN applied to Himawari-8 and GK2A blended imagery

* Development underway to blended satellite with radar and rainfall observation (rain-gauge) / estimate (e.g. GPM)
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Hinnamnor (2222)

2022-09-03 Reflectivity 2022-09-03
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Nanmadol (2224)

Reflectivity 2022-09-16 Reflectivity 2022-09-16
. Based @ 19:20Z ____Valid @ 19:40Z  Based @ 19:20Z ____Valid @ 19:40Z
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| POD - Lead time plot |
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Machine Learning in TC Intensity Forecasting
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Input layer Hidden layers Output layer

Using ML in post-processing HWRF model
outputs for TC Intensity Prediction

Intensity forecast, y(x)

A Feed Forward Neural Network Based on Model Output
Statistics for Short-Term Hurricane Intensity Prediction

Predictor variables, x (Table 1)

https://journals.ametsoc.org/doi/pdf/10.1 175/VWWAF-D-18-0173.1

TABLE 1. A complete list of all 18 predictors incorporated into the neural network. All predictors are derived from HWRF output unless
stated otherwise. Below, r, p, and T represent radius, pressure, and temperature, respectively. The mean and standard deviation of the
predictors are provided in the two rightmost columns as well.

No. of predictors
12 - - Description of predictor class for this class Mean Std dev
m— .

e Latitude of storm center (°N) 1 24.0 9.9
= 10 A Longitude of storm center (“W) 1 1071 3.9
ﬂ “Interpolated” maximum 1-min 10-m wind speed (HWFT) (kt) 1 49.7 239
E Minimum sea level pressure (hPa) 1 991.9 199
3 8 - 850-200-hPa vertical wind shear magnitude averaged over 0 = r << 500 km (kt) 1 20.7 13.6
E NHC Storm translation speed (ki) 1 11.1 6.7
= Sea surface T averaged over 0 =r <50 km (K) 1 296.7 9.1
o 6 —— Neural net Relative humidity (200 = r < 800 km) averaged over the layer 1 66.7 8.8
= 4 4 Convective available potential energy averaged over 0 = r < 100 or 2 1132.0/1059.9 836.8/681.9
2 — HWFI 200=r<500km (Jkg ')
ﬁ Surface turbulent sensible heat fluxes averaged over 100 = r << 200 km (W m~?%) 1 8.6 16.4
= 21 Total condensate averaged over 100=r <250 km (gkg ") 1 12.3 9.8
o Two inertial stability-based parameters averaged over 850 = p < 500 hPa and 2 4.2/0.2 5.2/0.2
- () 8 T g g e 0=r< 100 or 100 = r< 250 km (1052

IT I I I Symmetry parameter (as defined in Miyamoto and Takemi 2013) for total 2 31.9/48.8 14.9/21.8
I I I I I I I I I I I I condensate and the coupling of inertial stability/vertical motion, over
-2 - I I I I I 850=p < 500 hPa and 0= r <100 and 100 = r < 250 km, respectively (%)
Operational estimate of the maximum 1-min 10-m wind speed at the initial 1 57.6 28.8
b » % & % & 70
A binary indicator specifying whether a storm is in the Atlantic or eastern 1 — -

Lead time (hours) Pacific basin



https://journals.ametsoc.org/doi/pdf/10.1175/WAF-D-18-0173.1
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XGBoost

 XGBoost is a supervised, decision-tree-based ensemble learning algorithm based on
gradient boosting framework for regression and classification

Bootstrap aggregating or Models are built sequentially Optimized Gradient Boostin
Bagging ISa ensemb. € by mlnlmlzmg the errors from glgorithm through para“e] g
meta.-al.gonthm combgnlng previous models while processing, tree-pruning'
predictions from multlﬁle- increasinﬁ\(or boosting) handling missing values and
decision trees througha influence of high-performing regularization to avoid

majority voting mechanism models

/.

overfitting/bias

/ I-_EEBI Features &c/o_

Bagging oosting XGBoost Data Build Model
F(X1, X2)=Y
Decision 4dh @A
Trees W, Forest oostin —
‘:’"-'i'-:“*., _ e
Predict
: Bagging-based algorithm Gradient Boostin
re éegs:eanrzcgltcigi-r of W geregonly asubset of employs gradien New Data Use Model
osspible sgliitioneto features are selected at descent algorithm to
pa decision based on random to build a forest minimize errors in
Sertiin chnditions or coIIecttton of decision sequential models
rees

Source: Nvidia
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Calibrating tropical cyclone intensity forecast of ECMVVF EPS using XGBoost

Machine learning in calibrating tropical cyclone intensity forecast of ECMWF EPS
https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/met.204 |

* Predictors

— Persistence

— Current Intensity

— TCHP

— 200 hPa divergence

— 500 — 300 hPa average RH

— 850 — 200 hPa vertical wind shear

— Selected percentiles of TC maximum wind and
minimum pressure from EPS members

— Forecast hours

— Latitude and longitude of ensemble mean

S
Tree

Data set X

| l_____

X0}

: Tree2{X,0,}

Node splitting by
objective function

|fl.(X61|)'

_____ | ——

Treek{X,8,} |

L (X6

2 fi(X.6)



https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/met.2041
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FIGURE 4 Forecast RMSE of 30
maximum wind by XGBoost model
(blue), ECMWF EPS 95th
percentile (green), median

280

25

(orange) and mean (purple)

members, ECMWF HRES forecast

(yellow) and the benchmark MLR =0
model (magenta). Note that for

weaker EPS percentile members

8
the number of cases may be S 1
smaller since these members may
have forecast the TC to dissipate
10
5
0

12 24 36 48 60 72 84 96 108 120 132
Lead Time (Hours)

Count —Ensemble Mean —Median ——95th Percentile HRES —MLR —XGBoost

Ref: Machine learning in calibrating tropical cyclone intensity forecast of ECMWF EPS
https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/met.204 |



https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/met.2041
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Forecast for SURIGAE at 20210414002

- ECMWF -+~ JMA & NCEP -&- EGRR HWRF -« TWRF
-A ECMWF EPS ECEPS (XGBoost) = BEST

150
Likely RI Likely RI Likely RI Likely RI
(>= +15kts) (>= +30kts) (>= +40kts) (>= +50kts)
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130 XGBoost
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Forecast for MUIFA at 20220909002

-- ECMWF - JMA - NCEP -8 EGRR HWRF -+ TWRF
-A1E£EII)WF EPS ECEPS (XGBoost) -m ECEPS (XGBoost+Rl corr.) == WARN
No RI Likely RI Likely RI Likely RI
(29.5%) (>= +25kts) (>= +40kts) (>= +50kts)
(48.4%) (40.6%) (41.1%)
110
XGBoost
100 | oy T T O T Ot T T o T . o T O P P T T A T —
T R| ad ]
XGBoost
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60 |
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40
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Verification of Maximum Wind (2020 - 2021)

—2—FECMWF =&-ECMWFEPS =¢=]MA =+=NCEP =*=HWRF ==TINT XGBoost ECEPS =2&=HKO warn
[

30
25 -
I———_-—_.
J%
20 1 _—
----i“
o “0::_;...-—-"‘
= S
L |5 7 ’# *
% 'J@'------‘
-
‘ _..
L
10 -

0 I T T T T T T T T T
0 12 24 36 48 60 72 84 96 108 120

Forecast hour
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Next step on ML

* Physics-Informed Machine Learning (PIML) / Physics-Guided Neural Network (PGNN)
— Apply physical knowledge to inform data prediction capability of ML models

* Enhanced nowcast ML with explicit dynamics constraint
dg  0Oq

E.za—u-?q:ff

oy _a§’+_5? g,i’
at | or oy

IDSSPHY(?,u: v, S‘} — (_ 4

* Additional loss function terms in minimization process of ML model (e.g. TrajGRU):
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account for spatial and dynamical constraint
intensity errors



TrajGRU with
spatio-intensity

TrajGRU with physics

and spatio-intensity

Optical flow extrapolation Actual TrajGRU error constraint error constraint
Optical Flow 2020-05-21 Ground Truth 2020-05-21 HKO 7 2020-05-21 BMSE+BMAE+FSS 2020-05-21 BMSE+BMAE+FSS+PHYS 2020-05-21
Based @ 00:30H Valid @ 01:30H Based @ 01:30H Valid @ 01:30H Based @ 00:30H Valid @ 01:30H Based @ 00:30H Valid @ 01:30H Based @ 00:30H Valid @ 01:30H

| -hour
nowcast

A

/
l
\

- 44 ©

Optical Flow 2020-05-21 Ground Truth 2020-05-21 HKO 7 2020-05-21 BMSE+BMAE+FSS 2020-05-21
Based @ 00:30H Valid @ 02:30H Based @ 02:30H Valid @ 02:30H Based @ 00:30H Valid @ 02:30H Based @ 00:30H Valid @ 02:30H

BMSE+BMAE+FSS+PHYS 2020-05-21
Based @ 00:30H Valid @ 02:30H

% v

2-hour
nowcast

%
-

- 7S

More pronounced ‘i

development due to

Reflectivity [

T
w w w -h
N L [oo] =

N NN
o & @

15

10

physics constraint



TrajGRU with TrajGRU with physics

) _ _ spatio-intensity and spatio-intensity
Optical flow extrapolation Actual TrajGRU error constraint error constraint
Optical Flow 2020-08-18 Ground Truth 2020-08-18 HKO 7 2020-08-18 BMSE+BMAE+FSS 2020-08-18 BMSE+BMAE+FSS+PHYS 2020-08-18
Based @ 22:30H Valid @ 23:30H Based @ 23:30H Valid @ 23:30H Based @ 22:30H Valid @ 23:30H Based @ 22:30H Valid @ 23:30H Based @ 22:30H Valid @ 23:30H
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Optical Flow 2020-08-18 Ground Truth 2020-08-18 HKO 7 2020-08-18 BMSE+BMAE+FSS 2020-08-18 BMSE+BMAE+FSS+PHYS 2020-08-18
Based @ 22:30H Valid @ 00:30H Based @ 00:30H Valid @ 00:30H Based @ 22:30H Valid @ 00:30H Based @ 22:30H Valid @ 00:30H Based @ 22:30H Valid @ 00:30H
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Concluding remarks

Machine learning (and deep learning) and intuition from principles of statistical physics

Machine learning and deep learning have been evolving rapidly since development of rainfall
nowcasting application

— Powerful methods, yet rooms for improvement, in generating realistic “video” sequence of rainfall (and
other meteorological patterns)

— Choices of methods are more than science (and demanding efforts for trial and fine-tuning) —
supervised vs unsupervised; convolutional, autoencoder, generative adversarial network, ...

* More important to advance Al / ML in coming years:
— clean data and how extreme / anomaly could be effectively detected or predicted
— knowledge (from forecasters) and physics (explicit / parameterized / from full Earth system models)
— data and computational scientists
— applications in other scales of forecasts, re-analysis / hindcast and seamless prediction

Training and collaborative development opportunities on Al / ML
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Thank you very much
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